Autor: |
Hua, Zheng, Polishchuk, Alexander |
Rok vydání: |
2023 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
The derived moduli stack of complexes of vector bundles on a Gorenstein Calabi-Yau curve admits a 0-shifted Poisson structure. Feigin-Odesskii Poisson varieties are examples of such moduli spaces over complex elliptic curves. Using moduli stack of chains we construct an auxiliary Poisson varieties with a Poisson morphism from it to a Feigin-Odesskii variety. We call it the \emph{bosonization} of Feigin-Odesskii variety. As an application, we show that the Feigin-Odesskii Poisson brackets on projective spaces (associated with stable bundles of arbitrary rank on elliptic curves) admit no infinitesimal symmetries. |
Databáze: |
arXiv |
Externí odkaz: |
|