On rate of convergence for universality limits
Autor: | Bessonov, Roman |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a probability measure $\mu$ on the unit circle $\mathbb{T}$, consider the reproducing kernel $k_{\mu,n}(z_1, z_2)$ in the space of polynomials of degree at most $n-1$ with the $L^2(\mu)$-inner product. Let $u, v \in \mathbb{C}$. It is known that under mild assumptions on $\mu$ near $\zeta \in \mathbb{T}$, the ratio $k_{\mu,n}(\zeta e^{u/n}, \zeta e^{v/n})/k_{\mu,n}(\zeta, \zeta)$ converges to a universal limit $S(u, v)$ as $n \to \infty$. We give an estimate for the rate of this convergence for measures $\mu$ with finite logarithmic integral. Comment: 17 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |