On the Cauchy Integral Theorem and Polish spaces
Autor: | Morales, Cristian López, Maluendas, Camilo Ramírez |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that if a function $f$ is continuous in an open subset $U\subset\mathbb{C}$ and analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(i,n)$, such that $i\in\{0,1\}$ and $n\in\mathbb{N}$, then the complex integral line of $f$ along the boundary of any triangle in $U$ vanishes. |
Databáze: | arXiv |
Externí odkaz: |