On the sum of two powered numbers

Autor: Brüdern, Jörg, Robert, Olivier
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Fix a positive real number $\theta$. The natural numbers $m$ with largest square-free divisor not exceeding $m^\theta$ form a set $\mathscr{A}$, say. It is shown that whenever $\theta>1/2$ then all large natural numbers $n$ are the sum of two elements of $\mathscr{A}$. This is nearly best possible.
Comment: 3 pages. Submitted
Databáze: arXiv