On the sum of two powered numbers
Autor: | Brüdern, Jörg, Robert, Olivier |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Fix a positive real number $\theta$. The natural numbers $m$ with largest square-free divisor not exceeding $m^\theta$ form a set $\mathscr{A}$, say. It is shown that whenever $\theta>1/2$ then all large natural numbers $n$ are the sum of two elements of $\mathscr{A}$. This is nearly best possible. Comment: 3 pages. Submitted |
Databáze: | arXiv |
Externí odkaz: |