Machine learning of hidden variables in multiscale fluid simulation

Autor: Joglekar, Archis S., Thomas, Alexander G. R.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Solving fluid dynamics equations often requires the use of closure relations that account for missing microphysics. For example, when solving equations related to fluid dynamics for systems with a large Reynolds number, sub-grid effects become important and a turbulence closure is required, and in systems with a large Knudsen number, kinetic effects become important and a kinetic closure is required. By adding an equation governing the growth and transport of the quantity requiring the closure relation, it becomes possible to capture microphysics through the introduction of ``hidden variables'' that are non-local in space and time. The behavior of the ``hidden variables'' in response to the fluid conditions can be learned from a higher fidelity or ab-initio model that contains all the microphysics. In our study, a partial differential equation simulator that is end-to-end differentiable is used to train judiciously placed neural networks against ground-truth simulations. We show that this method enables an Euler equation based approach to reproduce non-linear, large Knudsen number plasma physics that can otherwise only be modeled using Boltzmann-like equation simulators such as Vlasov or Particle-In-Cell modeling.
Databáze: arXiv