Shor's Algorithm Does Not Factor Large Integers in the Presence of Noise

Autor: Cai, Jin-Yi
Rok vydání: 2023
Předmět:
Zdroj: SCIENCE CHINA Information Sciences 2024
Druh dokumentu: Working Paper
DOI: 10.1007/s11432-023-3961-3
Popis: We consider Shor's quantum factoring algorithm in the setting of noisy quantum gates. Under a generic model of random noise for (controlled) rotation gates, we prove that the algorithm does not factor integers of the form $pq$ when the noise exceeds a vanishingly small level in terms of $n$ -- the number of bits of the integer to be factored, where $p$ and $q$ are from a well-defined set of primes of positive density. We further prove that with probability $1 - o(1)$ over random prime pairs $(p,q)$, Shor's factoring algorithm does not factor numbers of the form $pq$, with the same level of random noise present.
Databáze: arXiv