Sharp upper bounds for the capacity in the hyperbolic and Euclidean spaces
Autor: | Li, Haizhong, Li, Ruixuan, Xiong, Changwei |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We derive various sharp upper bounds for the $p$-capacity of a smooth compact set $K$ in the hyperbolic space $\mathbb{H}^n$ and the Euclidean space $\mathbb{R}^n$. Firstly, using the inverse mean curvature flow, for the mean convex and star-shaped set $K$ in $\mathbb{H}^n$, we obtain sharp upper bounds for the $p$-capacity $\mathrm{Cap}_p(K)$ in three cases: (1) $n\geq 2$ and $p=2$, (2) $n=2$ and $p\geq 3$, (3) $n=3$ and $1 1$. Secondly, for the compact set $K$ in $\mathbb{R}^3$, using the weak inverse mean curvature flow, we get a sharp upper bound for the $p$-capacity ($1 Comment: 23 pages; all comments are welcome. arXiv admin note: text overlap with arXiv:2104.09905 |
Databáze: | arXiv |
Externí odkaz: |