The L-system representation and c-entropy

Autor: Belyi, Sergey, Makarov, Konstantin A., Tsekanovskii, Eduard
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Given a symmetric operator $\dot A$ with deficiency indices $(1,1)$ and its self-adjoint extension $A$ in a Hilbert space $\mathcal{H}$, we construct a (unique) L-system with the main operator in $\mathcal{H}$ such that its impedance mapping coincides with the Weyl-Titchmarsh function $M_{(\dot A, A)}(z)$ or its linear-fractional transformation $M_{(\dot A, A_\alpha)}(z)$. Similar L-system constructions are provided for the Weyl-Titchmarsh function $aM_{(\dot A, A)}(z)$ with $a>0$. We also evaluate c-entropy and the main operator dissipation coefficient for the obtained L-systems.
Comment: 26 pages
Databáze: arXiv