The L-system representation and c-entropy
Autor: | Belyi, Sergey, Makarov, Konstantin A., Tsekanovskii, Eduard |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a symmetric operator $\dot A$ with deficiency indices $(1,1)$ and its self-adjoint extension $A$ in a Hilbert space $\mathcal{H}$, we construct a (unique) L-system with the main operator in $\mathcal{H}$ such that its impedance mapping coincides with the Weyl-Titchmarsh function $M_{(\dot A, A)}(z)$ or its linear-fractional transformation $M_{(\dot A, A_\alpha)}(z)$. Similar L-system constructions are provided for the Weyl-Titchmarsh function $aM_{(\dot A, A)}(z)$ with $a>0$. We also evaluate c-entropy and the main operator dissipation coefficient for the obtained L-systems. Comment: 26 pages |
Databáze: | arXiv |
Externí odkaz: |