An unconditional Montgomery Theorem for Pair Correlation of Zeros of the Riemann Zeta Function

Autor: Baluyot, Siegfred Alan C., Goldston, Daniel Alan, Suriajaya, Ade Irma, Turnage-Butterbaugh, Caroline L.
Rok vydání: 2023
Předmět:
Zdroj: Acta Arith. 214 (2024), 357-376
Druh dokumentu: Working Paper
DOI: 10.4064/aa230612-20-3
Popis: Assuming the Riemann Hypothesis (RH), Montgomery proved a theorem concerning pair correlation of zeros of the Riemann zeta-function. One consequence of this theorem is that, assuming RH, at least $67.9\%$ of the nontrivial zeros are simple. Here we obtain an unconditional form of Montgomery's theorem and show how to apply it to prove the following result on simple zeros: Assuming all the zeros $\rho=\beta+i\gamma$ of the Riemann zeta-function such that $T^{3/8}<\gamma\le T$ satisfy $|\beta-1/2|<1/(2\log T)$, %lie in the thin box $\{s=\sigma +it: |\sigma-1/2|<1/(2\log T),\ T^{3/8}Comment: 13 pages, dedicated to Henryk Iwaniec on the occasion of his 75th birthday
Databáze: arXiv