On Seymour's and Sullivan's Second Neighbourhood Conjectures

Autor: Ai, Jiangdong, Gerke, Stefanie, Gutin, Gregory, Wang, Shujing, Yeo, Anders, Zhou, Yacong
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: For a vertex $x$ of a digraph, $d^+(x)$ ($d^-(x)$, resp.) is the number of vertices at distance 1 from (to, resp.) $x$ and $d^{++}(x)$ is the number of vertices at distance 2 from $x$. In 1995, Seymour conjectured that for any oriented graph $D$ there exists a vertex $x$ such that $d^+(x)\leq d^{++}(x)$. In 2006, Sullivan conjectured that there exists a vertex $x$ in $D$ such that $d^-(x)\leq d^{++}(x)$. We give a sufficient condition in terms of the number of transitive triangles for an oriented graph to satisfy Sullivan's conjecture. In particular, this implies that Sullivan's conjecture holds for all orientations of planar graphs and of triangle-free graphs. An oriented graph $D$ is an oriented split graph if the vertices of $D$ can be partitioned into vertex sets $X$ and $Y$ such that $X$ is an independent set and $Y$ induces a tournament. We also show that the two conjectures hold for some families of oriented split graphs, in particular, when $Y$ induces a regular or an almost regular tournament.
Comment: 14 pages, 1 figures
Databáze: arXiv