Rigorous Runtime Analysis of MOEA/D for Solving Multi-Objective Minimum Weight Base Problems

Autor: Do, Anh Viet, Neumann, Aneta, Neumann, Frank, Sutton, Andrew M.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We study the multi-objective minimum weight base problem, an abstraction of classical NP-hard combinatorial problems such as the multi-objective minimum spanning tree problem. We prove some important properties of the convex hull of the non-dominated front, such as its approximation quality and an upper bound on the number of extreme points. Using these properties, we give the first run-time analysis of the MOEA/D algorithm for this problem, an evolutionary algorithm that effectively optimizes by decomposing the objectives into single-objective components. We show that the MOEA/D, given an appropriate decomposition setting, finds all extreme points within expected fixed-parameter polynomial time in the oracle model, the parameter being the number of objectives. Experiments are conducted on random bi-objective minimum spanning tree instances, and the results agree with our theoretical findings. Furthermore, compared with a previously studied evolutionary algorithm for the problem GSEMO, MOEA/D finds all extreme points much faster across all instances.
Comment: 12 pages
Databáze: arXiv