A formula for the upper box-counting dimension of self-projective sets
Autor: | Sewell, Benedict |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove a packing exponent formula for the upper box-counting dimension of attractors of certain projective iterated function systems. This partially affirms a conjecture of De Leo, and gives that the box-counting dimension of the Rauzy gasket $\mathcal R$, $\operatorname{dim}_B(\mathcal R)$, exists and satisfies $\operatorname{dim}_B(\mathcal R) = \operatorname{dim}_H(\mathcal R) \in [1.6196,1.7415].$ Comment: 26 pages, 9 figures |
Databáze: | arXiv |
Externí odkaz: |