Frobenius distributions of low dimensional abelian varieties over finite fields
Autor: | Arango-Piñeros, Santiago, Bhamidipati, Deewang, Sankar, Soumya |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | International Mathematics Research Notices 2024 (2024), no. 16, 11989-12020 |
Druh dokumentu: | Working Paper |
Popis: | Given a $g$-dimensional abelian variety $A$ over a finite field $\mathbf{F}_q$, the Weil conjectures imply that the normalized Frobenius eigenvalues generate a multiplicative group of rank at most $g$. The Pontryagin dual of this group is a compact abelian Lie group that controls the distribution of high powers of the Frobenius endomorphism. This group, which we call the Serre--Frobenius group, encodes the possible multiplicative relations between the Frobenius eigenvalues. In this article, we classify all possible Serre--Frobenius groups that occur for $g \le 3$. We also give a partial classification for simple ordinary abelian varieties of prime dimension $g>3$. Comment: Fixed typesetting bug from v3 |
Databáze: | arXiv |
Externí odkaz: |