Low-complexity approximations for sets defined by generalizations of affine conditions

Autor: Gowers, W. T., Karam, Thomas
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Let $p$ be a prime, let $S$ be a non-empty subset of $\mathbb{F}_p$ and let $0<\epsilon\leq 1$. We show that there exists a constant $C=C(p, \epsilon)$ such that for every positive integer $k$, whenever $\phi_1, \dots, \phi_k: \mathbb{F}_p^n \rightarrow \mathbb{F}_p$ are linear forms and $E_1, \dots, E_k$ are subsets of $\mathbb{F}_p$, there exist linear forms $\psi_1, \dots, \psi_C: \mathbb{F}_p^n \rightarrow \mathbb{F}_p$ and subsets $F_1, \dots, F_C$ of $\mathbb{F}_p$ such that the set $U=\{x \in S^n: \psi_1(x) \in F_1, \dots, \psi_C(x) \in F_C\}$ is contained inside the set $V=\{x \in S^n: \phi_1(x) \in E_1, \dots, \phi_k(x) \in E_k\}$, and the difference $V \setminus U$ has density at most $\epsilon$ inside $S^n$. We then generalize this result to one where $\phi_1, \dots, \phi_k$ are replaced by homomorphisms $G^n \to H$ for some pair of finite Abelian groups $G$ and $H$, and to another where they are replaced by polynomial maps $\mathbb{F}_p^n \to \mathbb{F}_p$ of small degree.
Comment: 26 pages
Databáze: arXiv