Totally integrable symplectic billiards are ellipses
Autor: | Baracco, Luca, Bernardi, Olga |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we prove that a totally integrable strictly-convex symplectic billiard table, whose boundary has everywhere strictly positive curvature, must be an ellipse. The proof, inspired by the analogous result of Bialy for Birkhoff billiards, uses the affine equivariance of the symplectic billiard map. Comment: 11 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |