Quasi-linear fractional-order operators in Lipschitz domains
Autor: | Borthagaray, Juan Pablo, Li, Wenbo, Nochetto, Ricardo H. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove Besov boundary regularity for solutions of the homogeneous Dirichlet problem for fractional-order quasi-linear operators with variable coefficients on Lipschitz domains $\Omega$ of $\mathbb{R}^d$. Our estimates are consistent with the boundary behavior of solutions on smooth domains and apply to fractional $p$-Laplacians and operators with finite horizon. The proof exploits the underlying variational structure and uses a new and flexible local translation operator. We further apply these regularity estimates to derive novel error estimates for finite element approximations of fractional $p$-Laplacians and present several simulations that reveal the boundary behavior of solutions. |
Databáze: | arXiv |
Externí odkaz: |