Gradient descent-based programming of analog in-memory computing cores

Autor: Büchel, Julian, Vasilopoulos, Athanasios, Kersting, Benedikt, Odermatt, Frederic, Brew, Kevin, Ok, Injo, Choi, Sam, Saraf, Iqbal, Chan, Victor, Philip, Timothy, Saulnier, Nicole, Narayanan, Vijay, Gallo, Manuel Le, Sebastian, Abu
Rok vydání: 2023
Předmět:
Zdroj: 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 33.1.1-33.1.4
Druh dokumentu: Working Paper
DOI: 10.1109/IEDM45625.2022.10019486
Popis: The precise programming of crossbar arrays of unit-cells is crucial for obtaining high matrix-vector-multiplication (MVM) accuracy in analog in-memory computing (AIMC) cores. We propose a radically different approach based on directly minimizing the MVM error using gradient descent with synthetic random input data. Our method significantly reduces the MVM error compared with conventional unit-cell by unit-cell iterative programming. It also eliminates the need for high-resolution analog-to-digital converters (ADCs) to read the small unit-cell conductance during programming. Our method improves the experimental inference accuracy of ResNet-9 implemented on two phase-change memory (PCM)-based AIMC cores by 1.26%.
Databáze: arXiv