Detection of Non-uniformity in Parameters for Magnetic Domain Pattern Generation by Machine Learning
Autor: | Mamada, Naoya, Mizumaki, Masaichiro, Akai, Ichiro, Aonishi, Toru |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We estimate the spatial distribution of heterogeneous physical parameters involved in the formation of magnetic domain patterns of polycrystalline thin films by using convolutional neural networks. We propose a method to obtain a spatial map of physical parameters by estimating the parameters from patterns within a small subregion window of the full magnetic domain and subsequently shifting this window. To enhance the accuracy of parameter estimation in such subregions, we employ large-scale models utilized for natural image classification and exploit the benefits of pretraining. Using a model with high estimation accuracy on these subregions, we conduct inference on simulation data featuring spatially varying parameters and demonstrate the capability to detect such parameter variations. Comment: 32 pages, 14 figures |
Databáze: | arXiv |
Externí odkaz: |