Threshold dynamics for the 3$d$ radial NLS with combined nonlinearity

Autor: Ardila, Alex H., Murphy, Jason, Zheng, Jiqiang
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We consider the nonlinear Schr\"odinger equation with focusing quintic and defocusing cubic nonlinearity in three space dimensions: \[ (i\partial_t+\Delta)u = |u|^2 u - |u|^4 u. \] In [18, 23], the authors classified the dynamics of solutions under the energy constraint $E(u)< E^c(W)$, where $W$ is the quintic NLS ground state and $E^c$ is the quintic NLS energy. In this work we classify the dynamics of $H^1$ solutions at the threshold $E(u)=E^c(W)$.
Comment: 31 pages
Databáze: arXiv