Popis: |
Let $X$ denote a noncompact finite volume hyperbolic Riemann surface of genus $g\geq 2$, with only one puncture at $i\infty$ (identifying $X$ with its universal cover $\mathbb{H}$). Let $\overline{X}:=X\cup\lbrace i\infty\rbrace$ denote the Satake compactification of $X$. Let $\Omega_{\overline{X}}$ denote the cotangent bundle on $\overline{X}$. For $k\gg1$, we derive an estimate for $\mu_{\overline{X}}^{\mathrm{Ber},k}$, the Bergman metric associated to the line bundle $\mathcal{L}^{k}:=\Omega_{\overline{X}}\otimes \mathcal{O}_{\overline{X}}\big((k-1)\infty\big)$. For a given $d\geq 1$, the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by $\mu_{\mathrm{Sym}^d(\overline{X})}^{\mathrm{FS},k}$, defines a K\"ahler metric on $\mathrm{Sym}^d(\overline{X})$, the $d$-fold symmetric product of $\overline{X}$. Using our estimates of $\mu_{\overline{X}}^{\mathrm{Ber},k}$, as an application, we derive an estimate for $\mu_{\mathrm{Sym}^d(\overline{X}),\mathrm{vol}}^{\mathrm{FS},k}$, the volume form associated to the (1,1)-form $\mu_{\mathrm{Sym}^d(\overline{X})}^{\mathrm{FS},k}$. |