Construction of the Kolmogorov-Arnold representation using the Newton-Kaczmarz method

Autor: Poluektov, Michael, Polar, Andrew
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: It is known that any continuous multivariate function can be represented exactly by a composition functions of a single variable - the so-called Kolmogorov-Arnold representation. It can be a convenient tool for tasks where it is required to obtain a predictive model that maps some vector input of a black box system into a scalar output. In this case, the representation may not be exact, and it is more correct to refer to such structure as the Kolmogorov-Arnold model (or, as more recently popularised, 'network'). Construction of such model based on the recorded input-output data is a challenging task. In the present paper, it is suggested to decompose the underlying functions of the representation into continuous basis functions and parameters. It is then proposed to find the parameters using the Newton-Kaczmarz method for solving systems of non-linear equations. The algorithm is then modified to support the parallelisation. The paper demonstrates that such approach is also an excellent tool for data-driven solution of partial differential equations. Numerical examples show that for the considered model, the Newton-Kaczmarz method for parameter estimation is efficient and more robust with respect to the section of the initial guess than the straightforward application of the Gauss-Newton method. Furthermore, numerical experiments show that the proposed approach performs faster than neural network training to the same accuracy.
Databáze: arXiv