Scheme-Theoretic Approach to Computational Complexity. III. SETH

Autor: Çivril, Ali
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We show that there exist infinitely many $n \in \mathbb{Z}^+$ such that for any constant $\epsilon > 0$, any deterministic algorithm to solve $k$-\textsf{SAT} for $k \geq 3$ must perform at least $(2^{k-\frac{3}{2}-\epsilon})^{\frac{n}{k+1}}$ operations, where $n$ is the number of variables in the $k$\textsf{-SAT} instance.
Comment: 6 pages. Updated the definitions according to the first paper in the series
Databáze: arXiv