Adaptive Cross Tubal Tensor Approximation

Autor: Ahmadi-Asl, Salman, Phan, Anh Huy, Cichocki, Andrzej, Sozykina, Anastasia, Aghbari, Zaher Al, Wang, Jun, Oseledets, Ivan
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we propose a new adaptive cross algorithm for computing a low tubal rank approximation of third-order tensors, with less memory and lower computational complexity than the truncated tensor SVD (t-SVD). This makes it applicable for decomposing large-scale tensors. We conduct numerical experiments on synthetic and real-world datasets to confirm the efficiency and feasibility of the proposed algorithm. The simulation results show more than one order of magnitude acceleration in the computation of low tubal rank (t-SVD) for large-scale tensors. An application to pedestrian attribute recognition is also presented.
Databáze: arXiv