Properties of Non-Equilibrium Steady States for the non-linear BGK equation on the torus
Autor: | Evans, Josephine, Menegaki, Angeliki |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the non-linear BGK model in 1d coupled to a spatially varying thermostat. We show existence, local uniqueness and linear stability of a steady state when the linear coupling term is large compared to the non-linear self interaction term. This model possesses a non-explicit spatially dependent non-equilibrium steady state. We are able to successfully use hypocoercivity theory in this case to prove that the linearised operator around this steady state posesses a spectral gap. Comment: 41 pages |
Databáze: | arXiv |
Externí odkaz: |