Transformer-based stereo-aware 3D object detection from binocular images
Autor: | Sun, Hanqing, Pang, Yanwei, Cao, Jiale, Xie, Jin, Li, Xuelong |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1109/TITS.2024.3462795 |
Popis: | Transformers have shown promising progress in various visual object detection tasks, including monocular 2D/3D detection and surround-view 3D detection. More importantly, the attention mechanism in the Transformer model and the 3D information extraction in binocular stereo are both similarity-based. However, directly applying existing Transformer-based detectors to binocular stereo 3D object detection leads to slow convergence and significant precision drops. We argue that a key cause of that defect is that existing Transformers ignore the binocular-stereo-specific image correspondence information. In this paper, we explore the model design of Transformers in binocular 3D object detection, focusing particularly on extracting and encoding task-specific image correspondence information. To achieve this goal, we present TS3D, a Transformer-based Stereo-aware 3D object detector. In the TS3D, a Disparity-Aware Positional Encoding (DAPE) module is proposed to embed the image correspondence information into stereo features. The correspondence is encoded as normalized sub-pixel-level disparity and is used in conjunction with sinusoidal 2D positional encoding to provide the 3D location information of the scene. To enrich multi-scale stereo features, we propose a Stereo Preserving Feature Pyramid Network (SPFPN). The SPFPN is designed to preserve the correspondence information while fusing intra-scale and aggregating cross-scale stereo features. Our proposed TS3D achieves a 41.29% Moderate Car detection average precision on the KITTI test set and takes 88 ms to detect objects from each binocular image pair. It is competitive with advanced counterparts in terms of both precision and inference speed. Comment: Accepted by IEEE T-ITS |
Databáze: | arXiv |
Externí odkaz: |