Monotone energy stability of magnetohydrodynamics Couette and Hartmann flows
Autor: | Mulone, Giuseppe |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Ricerche di Matematica, 2023 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11587-023-00789-7 |
Popis: | We study the monotone nonlinear energy stability of \textit{magnetohydrodynamics plane shear flows, Couette and Hartmann flows}. We prove that the least stabilizing perturbations, in the energy norm, are the two-dimensional spanwise perturbations and give some criti\-cal Reynolds numbers Re$_E$ for some selected Prandtl and Hartmann numbers. This result solves a conjecture given in a recent paper by Falsaperla et al. \cite{FMP.2022} and implies a Squire theorem for nonlinear energy: the less stabilizing perturbations in the \textit{energy norm} are the two-dimensional spanwise perturbations. Moreover, for Reynolds numbers less than Re$_E $ there can be no transient energy growth. Comment: 13 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |