The stability region for Schur stable trinomials with general complex coefficients
Autor: | Barrera, Gerardo, Barrera, Waldemar, Navarrete, Juan Pablo |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Dynamics and Differential Equations 2023 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s10884-023-10331-w |
Popis: | In this paper, we characterize the stability region for trinomials of the form $f(\zeta):=a\zeta ^n + b\zeta ^m +c$, $\zeta\in \mathbb{C}$, where $a$, $b$ and $c$ are non-zero complex numbers and $n,m\in \mathbb{N}$ with $n>m$. More precisely, we provide necessary and sufficient conditions on the coefficients $a$, $b$ and $c$ in order that all the roots of the trinomial $f$ belongs to the open unit disc in the complex plane. The proof is based on Bohl's Theorem introduced in 1908. Comment: 28 pages and 2 figures |
Databáze: | arXiv |
Externí odkaz: |