Popis: |
This paper gives some results related to the research problem about infinite-dimensional affine variational inequalities raised by N.D. Yen and X. Yang [Affine variational inequalities on normed spaces, J. Optim. Theory Appl., 178 (2018), 36--55]. Namely, we obtain local error bounds for affine variational inequalities on Hilbert spaces. To do so, we revisit two fundamental properties of polyhedral mappings. Then, we prove a locally upper Lipschitzian property of the inverse of the residual mapping of the infinite-dimensional affine variational inequality under consideration. Finally, we derive the desired local error bounds from that locally upper Lipschitzian property. |