Categorical Quantum Groups and Braided Monoidal 2-Categories
Autor: | Chen, Hank, Girelli, Florian |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Following the dimensional ladder, we develop a systematic categorification of the theory of quantum groups/bialgebras in the $A_\infty$ setting, and study their higher-representation theory. By following closely the generalized quantum double construction of Majid, we construct in particular the 2-quantum double $D(\mathcal{G})$ associated to a 2-bialgebra $\mathcal{G}$, and prove its duality and factorization properties. We also characterize a notion of (quasitriangular) 2-R-matrix $\mathcal{R}$ and identify the associated 2-Yang-Baxter equations, which can be seen as a categorification of the usual notion of $R$-matrix in an ordinary quantum group. The main result we prove in this paper is that the weak 2-representation 2-category $\operatorname{2Rep}^{\mathcal{T}}(\mathcal{G})$ of a quasitriangular 2-bialgebra $(\mathcal{G},\mathcal{T},\mathcal{R})$ -- when monoidally weakened by a Hochschild 3-cocycle $\mathcal{T}$ -- forms a braided monoidal 2-category. Comment: 51 pages, 1 figure (v2: clarified certain parts; new result on semiclassical limit in Appendix) |
Databáze: | arXiv |
Externí odkaz: |