Variations of Squeeze and Excitation networks
Autor: | NV, Mahendran |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Convolutional neural networks learns spatial features and are heavily interlinked within kernels. The SE module have broken the traditional route of neural networks passing the entire result to next layer. Instead SE only passes important features to be learned with its squeeze and excitation (SE) module. We propose variations of the SE module which improvises the process of squeeze and excitation and enhances the performance. The proposed squeezing or exciting the layer makes it possible for having a smooth transition of layer weights. These proposed variations also retain the characteristics of SE module. The experimented results are carried out on residual networks and the results are tabulated. Comment: 8 pages,3 figures, 4 tables |
Databáze: | arXiv |
Externí odkaz: |