Local Conditions for Global Convergence of Gradient Flows and Proximal Point Sequences in Metric Spaces

Autor: Schiavo, Lorenzo Dello, Maas, Jan, Pedrotti, Francesco
Rok vydání: 2023
Předmět:
Zdroj: Tran. Amer. Math. Soc. 2024 (online)
Druh dokumentu: Working Paper
DOI: 10.1090/tran/9156
Popis: This paper deals with local criteria for the convergence to a global minimiser for gradient flow trajectories and their discretisations. To obtain quantitative estimates on the speed of convergence, we consider variations on the classical Kurdyka--{\L}ojasiewicz inequality for a large class of parameter functions. Our assumptions are given in terms of the initial data, without any reference to an equilibrium point. The main results are convergence statements for gradient flow curves and proximal point sequences to a global minimiser, together with sharp quantitative estimates on the speed of convergence. These convergence results apply in the general setting of lower semicontinuous functionals on complete metric spaces, generalising recent results for smooth functionals on $\mathbb{R}^n$. While the non-smooth setting covers very general spaces, it is also useful for (non)-smooth functionals on $\mathbb{R}^n$.
Comment: 22 pages, 3 figures
Databáze: arXiv