Measure theoretic results for approximation by neural networks with limited weights

Autor: Ismailov, Vugar, Savas, Ekrem
Rok vydání: 2023
Předmět:
Zdroj: Numer. Funct. Anal. Optim. 38 (2017), no. 7, 819--830
Druh dokumentu: Working Paper
DOI: 10.1080/01630563.2016.1254654
Popis: In this paper, we study approximation properties of single hidden layer neural networks with weights varying on finitely many directions and thresholds from an open interval. We obtain a necessary and at the same time sufficient measure theoretic condition for density of such networks in the space of continuous functions. Further, we prove a density result for neural networks with a specifically constructed activation function and a fixed number of neurons.
Comment: 12 pages
Databáze: arXiv
Nepřihlášeným uživatelům se plný text nezobrazuje