Measure theoretic results for approximation by neural networks with limited weights
Autor: | Ismailov, Vugar, Savas, Ekrem |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Numer. Funct. Anal. Optim. 38 (2017), no. 7, 819--830 |
Druh dokumentu: | Working Paper |
DOI: | 10.1080/01630563.2016.1254654 |
Popis: | In this paper, we study approximation properties of single hidden layer neural networks with weights varying on finitely many directions and thresholds from an open interval. We obtain a necessary and at the same time sufficient measure theoretic condition for density of such networks in the space of continuous functions. Further, we prove a density result for neural networks with a specifically constructed activation function and a fixed number of neurons. Comment: 12 pages |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |