On the limiting problems for two eigenvalue systems and variations
Autor: | Bueno, Hamilton P, Medeiros, Aldo H S |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\Omega$ be a bounded, smooth domain. Supposing that $\alpha(p) + \beta(p) = p$, $\forall\, p \in \left(\frac{N}{s},\infty\right)$ and $\displaystyle\lim_{p \to \infty} \alpha(p)/{p} = \theta \in (0,1)$, we consider two systems for the fractional $p$-Laplacian and a variation on the first system. The first system is the following. $$\left\{\begin{array}{ll} (-\Delta_p)^{s}u(x) = \lambda \alpha(p) \vert u \vert^{\alpha(p)-2} u \vert v(x_0)\vert^{\beta(p)} & {\rm in} \ \ \Omega,\\ (-\Delta_p)^{t}v(x) = \lambda \beta(p) \left(\displaystyle\int_{\Omega}\vert u \vert^{\alpha(p)} d x\right) \vert v(x_0) \vert^{\beta(p)-2} v(x_0) \delta_{x_0} & {\rm in} \ \ \Omega,\\ u= v=0 & {\rm in} \ \mathbb{R}^N\setminus\Omega, \end{array}\right. $$ where $x_0$ is a point in $\overline{\Omega}$, $\lambda$ is a parameter, $0 Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |