Autor: |
Wang, Zhaofei, Zhang, Weijia, Zhang, Min-Ling |
Rok vydání: |
2023 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Weakly Supervised Object Detection (WSOD) enables the training of object detection models using only image-level annotations. State-of-the-art WSOD detectors commonly rely on multi-instance learning (MIL) as the backbone of their detectors and assume that the bounding box proposals of an image are independent of each other. However, since such approaches only utilize the highest score proposal and discard the potentially useful information from other proposals, their independent MIL backbone often limits models to salient parts of an object or causes them to detect only one object per class. To solve the above problems, we propose a novel backbone for WSOD based on our tailored Vision Transformer named Weakly Supervised Transformer Detection Network (WSTDN). Our algorithm is not only the first to demonstrate that self-attention modules that consider inter-instance relationships are effective backbones for WSOD, but also we introduce a novel bounding box mining method (BBM) integrated with a memory transfer refinement (MTR) procedure to utilize the instance dependencies for facilitating instance refinements. Experimental results on PASCAL VOC2007 and VOC2012 benchmarks demonstrate the effectiveness of our proposed WSTDN and modified instance refinement modules. |
Databáze: |
arXiv |
Externí odkaz: |
|