Riemannian distance and symplectic embeddings in cotangent bundle

Autor: Broćić, Filip
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1142/S021919972450024X
Popis: Given an open neighborhood $W$ of the zero section in the cotangent bundle of $N$ we define a distance-like function $\rho_W$ on $N$ using certain symplectic embeddings from the standard ball $B^{2n}(r)$ to $W$. We show that when $W$ is the unit disc-cotangent bundle of a Riemannian metric on $N$, $\rho_W$ recovers the metric. As an intermediate step, we give a new construction of the ball of capacity 4 to the product of Lagrangian discs $P_L := B^n(1)\times B^n(1)$, and we give a new proof of the strong Viterbo conjecture about normalized capacities for $P_L$. We also give bounds of the symplectic packing number of two balls in a unit disc-cotangent bundle relative to the zero section $N$.
Comment: corrected a mistake on the page 19 below Equation (8), small changes, typos corrected
Databáze: arXiv