Many subalgebras of $\mathcal{P}(\omega)/\mathit{fin}$
Autor: | Hart, Klaas Pieter |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In answer to a question on Mathoverflow we show that the Boolean algebra $\mathcal{P}(\omega)/\mathit{fin}$ contains a family $\{\mathcal{B}_X:X\subseteq\mathfrak{c}\}$ of subalgebras with the property that $X\subseteq Y$ implies $\mathcal{B}_Y$ is a subalgebra of $\mathcal{B}_X$ and if $X\not\subseteq Y$ then $\mathcal{B}_Y$ is not embeddable into~$\mathcal{B}_X$. The proof proceeds by Stone duality and the construction of a suitable family of separable zero-dimensional compact spaces. Comment: Version 2: added a description of a 40-years old answer to the original question |
Databáze: | arXiv |
Externí odkaz: |