Machine learning topological defects in confluent tissues

Autor: Killeen, Andrew, Bertrand, Thibault, Lee, Chiu Fan
Rok vydání: 2023
Předmět:
Zdroj: Biophyscial Reports 4, 100142 (2024)
Druh dokumentu: Working Paper
DOI: 10.1016/j.bpr.2024.100142
Popis: Active nematics is an emerging paradigm for characterising biological systems. One aspect of particularly intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital importance to improving our understanding of such processes. While robust methods for defect detection exist for systems of elongated constituents, other systems, such as epithelial layers, are not well suited to such methods. Here, we address this problem by developing a convolutional neural network to detect and classify nematic defects in confluent cell layers. Crucially, our method is readily implementable on experimental images of cell layers and is specifically designed to be suitable for cells that are not rod-shaped. We demonstrate that our machine learning model outperforms current defect detection techniques and that this manifests itself in our method requiring less data to accurately capture defect properties. This could drastically improve the accuracy of experimental data interpretation whilst also reducing costs, advancing the study of nematic defects in biological systems.
Comment: 15 pages, 5 figures + 2 page appendix
Databáze: arXiv