AidUI: Toward Automated Recognition of Dark Patterns in User Interfaces
Autor: | Mansur, SM Hasan, Salma, Sabiha, Awofisayo, Damilola, Moran, Kevin |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Past studies have illustrated the prevalence of UI dark patterns, or user interfaces that can lead end-users toward (unknowingly) taking actions that they may not have intended. Such deceptive UI designs can result in adverse effects on end users, such as oversharing personal information or financial loss. While significant research progress has been made toward the development of dark pattern taxonomies, developers and users currently lack guidance to help recognize, avoid, and navigate these often subtle design motifs. However, automated recognition of dark patterns is a challenging task, as the instantiation of a single type of pattern can take many forms, leading to significant variability. In this paper, we take the first step toward understanding the extent to which common UI dark patterns can be automatically recognized in modern software applications. To do this, we introduce AidUI, a novel automated approach that uses computer vision and natural language processing techniques to recognize a set of visual and textual cues in application screenshots that signify the presence of ten unique UI dark patterns, allowing for their detection, classification, and localization. To evaluate our approach, we have constructed ContextDP, the current largest dataset of fully-localized UI dark patterns that spans 175 mobile and 83 web UI screenshots containing 301 dark pattern instances. The results of our evaluation illustrate that \AidUI achieves an overall precision of 0.66, recall of 0.67, F1-score of 0.65 in detecting dark pattern instances, reports few false positives, and is able to localize detected patterns with an IoU score of ~0.84. Furthermore, a significant subset of our studied dark patterns can be detected quite reliably (F1 score of over 0.82), and future research directions may allow for improved detection of additional patterns. Comment: 13 pages, Accepted at The 45th IEEE/ACM International Conference on Software Engineering (ICSE 2023), Melbourne, Australia, May 14th-20th, 2023 |
Databáze: | arXiv |
Externí odkaz: |