On the structure of the diffusion distance induced by the fractional dyadic Laplacian

Autor: Acosta, María Florencia, Aimar, Hugo, Gómez, Ivana, Morana, Federico
Rok vydání: 2023
Předmět:
Zdroj: Opuscula Math. 44, no. 2 (2024), 157-165
Druh dokumentu: Working Paper
DOI: 10.7494/OpMath.2024.44.2.157
Popis: In this note we explore the structure of the diffusion metric of Coifman-Lafon determined by fractional dyadic Laplacians. The main result is that, for each ${t>0}$, the diffusion metric is a function of the dyadic distance, given in $\mathbb{R}^+$ by $\delta(x,y) = \inf\{|I|: I \text{ is a dyadic interval containing } x \text{ and } y\}$. Even if these functions of $\delta$ are not equivalent to $\delta$, the families of balls are the same, to wit, the dyadic intervals.
Comment: 8 pages
Databáze: arXiv