On the structure of the diffusion distance induced by the fractional dyadic Laplacian
Autor: | Acosta, María Florencia, Aimar, Hugo, Gómez, Ivana, Morana, Federico |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Opuscula Math. 44, no. 2 (2024), 157-165 |
Druh dokumentu: | Working Paper |
DOI: | 10.7494/OpMath.2024.44.2.157 |
Popis: | In this note we explore the structure of the diffusion metric of Coifman-Lafon determined by fractional dyadic Laplacians. The main result is that, for each ${t>0}$, the diffusion metric is a function of the dyadic distance, given in $\mathbb{R}^+$ by $\delta(x,y) = \inf\{|I|: I \text{ is a dyadic interval containing } x \text{ and } y\}$. Even if these functions of $\delta$ are not equivalent to $\delta$, the families of balls are the same, to wit, the dyadic intervals. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |