On subtensors of high partition rank

Autor: Draisma, Jan, Karam, Thomas
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that for every positive integer $d \ge 2$ there exist polynomial functions $F_d, G_d: \mathbb{N} \to \mathbb{N}$ such that for each positive integer $r$, every order-$d$ tensor $T$ over an arbitrary field and with partition rank at least $G_d(r)$ contains a $F_d(r) \times \cdots \times F_d(r)$ subtensor with partition rank at least $r$. We then deduce analogous results on the Schmidt rank of polynomials in zero or high characteristic.
Comment: 10 pages
Databáze: arXiv