On subtensors of high partition rank
Autor: | Draisma, Jan, Karam, Thomas |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that for every positive integer $d \ge 2$ there exist polynomial functions $F_d, G_d: \mathbb{N} \to \mathbb{N}$ such that for each positive integer $r$, every order-$d$ tensor $T$ over an arbitrary field and with partition rank at least $G_d(r)$ contains a $F_d(r) \times \cdots \times F_d(r)$ subtensor with partition rank at least $r$. We then deduce analogous results on the Schmidt rank of polynomials in zero or high characteristic. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |