Global existence and non-uniqueness for the Cauchy problem associated to 3D Navier-Stokes equations perturbed by transport noise
Autor: | Pappalettera, Umberto |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Stoch. Partial Differ. Equ. Anal. Comput. (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s40072-023-00318-5 |
Popis: | We show global existence and non-uniqueness of probabilistically strong, analytically weak solutions of the three-dimensional Navier-Stokes equations perturbed by Stratonovich transport noise. We can prescribe either: \emph{i}) any divergence-free, square integrable intial condition; or \emph{ii}) the kinetic energy of solutions up to a stopping time, which can be chosen arbitrarily large with high probability. Solutions enjoy some Sobolev regularity in space but are not Leray-Hopf. Comment: 25 pages |
Databáze: | arXiv |
Externí odkaz: |