Tangent fermions: Dirac or Majorana fermions on a lattice without fermion doubling
Autor: | Beenakker, C. W. J., Vela, A. Donis, Lemut, G., Pacholski, M. J., Tworzydlo, J. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Annalen der Physik 535, 2300081 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1002/andp.202300081 |
Popis: | I. Introduction II. Two-dimensional lattice fermions III. Methods to avoid fermion doubling (sine dispersion, sine plus cosine dispersion, staggered lattice dispersion, linear sawtooth dispersion, tangent dispersion) IV. Topologically protected Dirac cone V. Application: Klein tunneling (tangent fermions on a space-time lattice, wave packet propagation) VI. Application: Strong antilocalization (transfer matrix of tangent fermions, topological insulator versus graphene) VII. Application: Anomalous quantum Hall effect (gauge invariant tangent fermions, topologically protected zeroth Landau level) VIII. Application: Majorana metal (Dirac versus Majorana fermions, phase diagram) IX. Outlook Comment: review article, 26 pages, 13 figures; V2: added three appendices, and provided code for the various implementations |
Databáze: | arXiv |
Externí odkaz: |