Poincar\'e-Chetaev equations in the Dirac's formalism of constrained systems
Autor: | Deriglazov, Alexei A. |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Particles 2023, 6, 913-922 |
Druh dokumentu: | Working Paper |
DOI: | 10.3390/particles6040059 |
Popis: | We single out a class of Lagrangians on a group manifold, for which one can introduce non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure without explicitly calculating the Dirac bracket. In the case of $SO(3)$\,- manifold, the application of this formalism leads to the Poincar\'e-Chetaev equations. The general solution to these equations is written in terms of exponential of the Hamiltonian vector field. Comment: 6 pages, Typos fixed, references added |
Databáze: | arXiv |
Externí odkaz: |