Harmonic and biharmonic Riemannain submersions from Sol space
Autor: | Wang, Ze-Ping, Ou, Ye-Lin, Liu, Qi-Long |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we give a complete classification of harmonic and biharmonic Riemannian submersions $\pi:(R^3,g_{Sol})\to (N^2,h)$ from Sol space into a surface by proving that there is neither harmonic nor biharmonic Riemannian submersion $\pi:(R^3,g_{Sol})\to (N^2,h)$ from Sol space no matter what the base space $(N^2,h)$ is. We also prove that a Riemannian submersion $\pi:(R,g_{Sol})\to (N^2,h)$ from Sol space exists only when the base space is a hyperbolic space form. Comment: arXiv admin note: text overlap with arXiv:2302.11545 |
Databáze: | arXiv |
Externí odkaz: |