Seiberg-Witten differentials on the Hitchin base
Autor: | Bruzzo, Ugo, Dalakov, Peter |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (RACSAM) 118, 53 (2024) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s13398-024-01551-w |
Popis: | In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss--Manin) derivative of the Seiberg--Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration. Dedicated to Tony Pantev on the occasion of his 60th birthday. Comment: 18 pages. Second version with minor modifications and corrected typos |
Databáze: | arXiv |
Externí odkaz: |