Seiberg-Witten differentials on the Hitchin base

Autor: Bruzzo, Ugo, Dalakov, Peter
Rok vydání: 2023
Předmět:
Zdroj: Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (RACSAM) 118, 53 (2024)
Druh dokumentu: Working Paper
DOI: 10.1007/s13398-024-01551-w
Popis: In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss--Manin) derivative of the Seiberg--Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration. Dedicated to Tony Pantev on the occasion of his 60th birthday.
Comment: 18 pages. Second version with minor modifications and corrected typos
Databáze: arXiv