Vector space partitions of $\operatorname{GF}(2)^8$
Autor: | Kurz, Sascha |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A vector space partition $\mathcal{P}$ of the projective space $\operatorname{PG}(v-1,q)$ is a set of subspaces in $\operatorname{PG}(v-1,q)$ which partitions the set of points. We say that a vector space partition $\mathcal{P}$ has type $(v-1)^{m_{v-1}} \dots 2^{m_2}1^{m_1}$ if precisely $m_i$ of its elements have dimension $i$, where $1\le i\le v-1$. Here we determine all possible types of vector space partitions in $\operatorname{PG}(7,2)$. Comment: 27 pages |
Databáze: | arXiv |
Externí odkaz: |