On the structure and stability of ranks of $2$-class groups in cyclotomic $\mathbb{Z}_{2}$-extensions of certain real quadratic fields
Autor: | Chattopadhyay, Jaitra, Laxmi, H, Saikia, Anupam |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a real quadratic field $K= \mathbb{Q}(\sqrt{d})$ with discriminant $D_{K}$ having four distinct prime factors, we study the structure of the $2$-class group $A(K_{1})$ of the first layer $K_{1} = \mathbb{Q}(\sqrt{2},\sqrt{d})$ of the cyclotomic $\mathbb{Z}_{2}$-extension of $K$. With some suitably convenient assumptions on the rank and the order of $A(K_{1})$, we characterize $K$ for which the $2$-class group $A(K)$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. We infer that the $2$-ranks of the class groups in each layer stabilizes by virtue of a result of Fukuda. This also provides an alternate way to establish that the Iwasawa $\mu$-invariant of $K$ vanishes. In some cases, we also provide sufficient conditions on the constituent prime factors of $D_{K}$ that imply $A(K) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $A(K_{1}) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ and $A(K^{\prime}) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, where $K^{\prime} = \mathbb{Q}(\sqrt{2d})$. This extends some results obtained by Mizusawa. Comment: 13 pages, 3 Tables |
Databáze: | arXiv |
Externí odkaz: |