Bi-isometries reducing the hyper-ranges of the coordinates
Autor: | Chavan, Sameer, Reza, Md. Ramiz |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $(S_1, S_2)$ be a bi-isometry, that is, a pair of commuting isometries $S_1$ and $S_2$ on a complex Hilbert space $\mathscr H.$ By the von Neumann-Wold decomposition, the hyper-range $\mathscr H_\infty(S_1):=\cap_{n=0}^\infty S^n_1\mathscr H$ of $S_1$ reduces $S_1$ to a unitary operator. Although $\mathscr H_\infty(S_1)$ is an invariant subspace for $S_2,$ in general, $\mathscr H_\infty(S_1)$ is not a reducing subspace for $S_2.$ We show that $\mathscr H_\infty(S_1)$ reduces $S_2$ to an isometry if and only if the subspaces $S_2(\ker S^*_1)$ and $\mathscr H_\infty(S_1)$ of $\mathscr H$ are orthogonal. Further, we describe all bi-isometries $(S_1, S_2)$ satisfying the orthogonality condition mentioned above. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |