Compactness of Toeplitz operators with continuous symbols on pseudoconvex domains in $\mathbb{C}^n$

Autor: Rodriguez, Tomas Miguel, Sahutoglu, Sonmez
Rok vydání: 2023
Předmět:
Zdroj: Proc. Amer. Math. Soc. Ser. B 11 (2024), 406--421
Druh dokumentu: Working Paper
DOI: 10.1090/bproc/217
Popis: Let $\Omega$ be a bounded pseudoconvex domain in $\mathbb{C}^n$ with Lipschitz boundary and $\phi$ be a continuous function on $\overline{\Omega}$. We show that the Toeplitz operator $T_{\phi}$ with symbol $\phi$ is compact on the weighted Bergman space if and only if $\phi$ vanishes on the boundary of $\Omega$. We also show that compactness of the Toeplitz operator $T^{p,q}_{\phi}$ on $\overline{\partial}$-closed $(p,q)$-forms for $0\leq p\leq n$ and $q\geq 1$ is equivalent to $\phi=0$ on $\Omega$.
Comment: Final version. Fixed one reference. To appear in Proc. Amer. Math. Soc
Databáze: arXiv