Value Distributions of Perfect Nonlinear Functions

Autor: Kölsch, Lukas, Polujan, Alexandr
Rok vydání: 2023
Předmět:
Zdroj: K\"olsch, L., Polujan, A. Value Distributions of Perfect Nonlinear Functions. Combinatorica (2023)
Druh dokumentu: Working Paper
DOI: 10.1007/s00493-023-00067-y
Popis: In this paper, we study the value distributions of perfect nonlinear functions, i.e., we investigate the sizes of image and preimage sets. Using purely combinatorial tools, we develop a framework that deals with perfect nonlinear functions in the most general setting, generalizing several results that were achieved under specific constraints. For the particularly interesting elementary abelian case, we derive several new strong conditions and classification results on the value distributions. Moreover, we show that most of the classical constructions of perfect nonlinear functions have very specific value distributions, in the sense that they are almost balanced. Consequently, we completely determine the possible value distributions of vectorial Boolean bent functions with output dimension at most 4. Finally, using the discrete Fourier transform, we show that in some cases value distributions can be used to determine whether a given function is perfect nonlinear, or to decide whether given perfect nonlinear functions are equivalent.
Comment: 28 pages. minor revisions of the previous version. The paper is now identical to the published version, outside of formatting
Databáze: arXiv